Dynamic flight isn’t just for albatrosses, researchers show

Credit: public domain CC0

A new study shows how small seabirds have mastered the art of working smarter, not harder, when soaring at sea.

The new study published today in Scientists progress proves that it’s not just albatrosses that perform the aerobatics necessary for spirited flight over the windy ocean. Research shows that elegant seabirds called Manx shearwaters perform the same flight feat in the seas around the UK.

The albatross glides in a corkscrew motion to harvest energy from the wind gradient on the ocean surface, where the wind gets faster with height. This method of harvesting wind energy to conserve effort is called dynamic flight and explains how the albatross can fly thousands of miles across the oceans with barely flapping its wings.

Use of birds video cameras and GPS loggers, researchers from Oxford University’s Department of Biology have shown that the Manx shearwater also uses dynamic flight. The main difference is that by flapping their wings for part of the cycle, shearwaters can perform the same flight feat in lower winds.

The weaving and undulating flight characteristic of dynamic flight was first described scientifically in 1883 and was noticed almost 400 years earlier by Leonardo da Vinci. It has, however, remained a remarkably difficult phenomenon to prove.

“To demonstrate experimentally that a bird harvests energy from the wind shear gradient is very difficult, especially in gliding. birds like the shearwater,” said study co-lead author James Kempton, “so we developed a new way to calculate energy harvest by modeling the shape of their flight paths relative to the wind.”






The researchers analyzed video footage recorded from the backs of shearwaters flying at high speed over the Irish Sea. Using this to calculate the birds’ weaving and wave motion relative to the wind, the research team was able to determine when the shearwaters used dynamic flight to harvest energy from the wind rather than expend their own energy.

The GPS loggers provided behavioral data from over 200 birds on their preferred direction of travel under different wind conditions. Analysis of this GPS data revealed that shearwaters not only could use dynamic flight to harvest energy wind like albatross; they also actively chose terms that offered the opportunity to work smarter, not harder.

“When the winds are stronger, shearwaters actively move in a direction that uses those winds to the greatest energetic advantage,” said co-first author Dr. Joe Wynn of the paper. “However, we only see this on the flight going to feed and not when the birds need to return to the colony, regardless of the prevailing winds.”

Unlike previous approaches to dynamic flight analysis, the approach developed by the authors could be applied to a variety of species, even birds not traditionally associated with dynamic flight such as gulls and hawks that could use the same flight technique less conspicuously.

“Our results show that it is possible to save energy by sneaking even in fairly light winds, as long as you are willing to put in a little effort to get a big return on investment,” said the lead author, Professor Graham Taylor. “The fact that the Manx shearwater does this suggests that small drones could pull the same trick to extend their flight the scope and duration of patrols in UK coastal waters. »


What the New Jurassic Park Movie Wrong: Aerodynamic Analysis Causes Largest Pterosaur to Be Redesigned


More information:
James A. Kempton et al, Optimizing the dynamic soaring of a flapper seabird affects its large-scale distribution at sea, Scientists progress (2022). DOI: 10.1126/sciadv.abo0200

Quote: Researchers show dynamic soaring is not just for albatrosses (June 1, 2022) Retrieved June 1, 2022 from https://phys.org/news/2022-06-dynamic-soaring-isnt-albatrosses.html

This document is subject to copyright. Except for fair use for purposes of private study or research, no part may be reproduced without written permission. The content is provided for information only.


#Dynamic #flight #isnt #albatrosses #researchers #show

Leave a Comment

Your email address will not be published. Required fields are marked *